[人工智能]RNN与LSTM的深度学习 (20180830)

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://lekkoliu.blog.csdn.net/article/details/82194740

写在前面

主要是想通过RNN来做一个分析价格的工具,最好是能够做个预测,预测准确率达到51%即可。因此想试试。

踩坑经验

1.配置环境的坑
通过前文的安装环境之后,会遇到各种坑。但是基本上都可以百度自行解决,这里不再赘述。

2.代码的坑
目前通过RNN与LSTM来分析虚拟货币数据的样板软件,包括CSDN在内的基本都有各种各样的坑,目前我遇到的就有:
1) 记住一些基本的python函数需要import,比如时间函数time等。
2) 有时候样板代码中一些类似于伪代码的函数注意,比如plt_show这种明显是不存在的。因此注意要么是其他编译器或者工具带有的扩张函数,要么就是已经定义了但是该文作者没有贴上来。因此注意最好找到最终的源代码或者自己分析内容进行函数自行补充。
3)哪怕是作者贴了代码贴了跑的图,也要注意有可能其饮用的第三方数据源产生了变化。比如说引用数据BTC_Open的时候,其实数据源那边已经变成了BTC_Open*。导致编译器爆了一大堆错误(日了狗),实际上就是个数据源不一致的问题。所以记住要看好报错信息,找到有用的报错信息再对原始数据进行验证。

粘贴战果

这里写图片描述

展开阅读全文

RNNLSTM、GRU

02-22

<p style="font-size:16px;">rn 本课程适合具有一定深度学习基础,希望发展为深度学习之计算机视觉方向的算法工程师和研发人员的同学们。<br />rn<br />rn基于深度学习的计算机视觉是目前人工智能最活跃的领域,应用非常广泛,如人脸识别和无人驾驶中的机器视觉等。该领域的发展日新月异,网络模型和算法层出不穷。如何快速入门并达到可以从事研发的高度对新手和中级水平的学生而言面临不少的挑战。精心准备的本课程希望帮助大家尽快掌握基于深度学习的计算机视觉的基本原理、核心算法和当前的领先技术,从而有望成为深度学习之计算机视觉方向的算法工程师和研发人员。<br />rn<br />rn本课程系统全面地讲述基于深度学习的计算机视觉技术的原理并进行项目实践。课程涵盖计算机视觉的七大任务,包括图像分类、目标检测、图像分割(语义分割、实例分割、全景分割)、人脸识别、图像描述、图像检索、图像生成(利用生成对抗网络)。本课程注重原理和实践相结合,逐篇深入解读经典和前沿论文70余篇,图文并茂破译算法难点, 使用思维导图梳理技术要点。项目实践使用Keras框架(后端为Tensorflow),学员可快速上手。<br />rn<br />rn通过本课程的学习,学员可把握基于深度学习的计算机视觉的技术发展脉络,掌握相关技术原理和算法,有助于开展该领域的研究与开发实战工作。另外,深度学习之计算机视觉方向的知识结构及学习建议请参见本人CSDN博客。<br />rn<br />rn本课程提供课程资料的课件PPT(pdf格式)和项目实践代码,方便学员学习和复习。<br />rn<br />rn本课程分为上下两部分,其中上部包含课程的前五章(课程介绍、深度学习基础、图像分类、目标检测、图像分割),下部包含课程的后四章(人脸识别、图像描述、图像检索、图像生成)。rn</p>rn<p style="font-size:16px;">rn <br />rn</p>rn<p style="font-size:16px;">rn <img src="https://img-bss.csdn.net/201902221256508000.gif" alt="" /><img src="https://img-bss.csdn.net/201902221257045928.gif" alt="" /><img src="https://img-bss.csdn.net/201902221257156312.gif" alt="" /><img src="https://img-bss.csdn.net/201902221257252319.gif" alt="" /> rn</p>

没有更多推荐了,返回首页